14 resultados para Glycoproteins

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional vaccines such as inactivated or live attenuated vaccines, are gradually giving way to more biochemically defined vaccines that are most often based on a recombinant antigen known to possess neutralizing epitopes. Such vaccines can offer improvements in speed, safety and manufacturing process but an inevitable consequence of their high degree of purification is that immunogenicity is reduced through the lack of the innate triggering molecules present in more complex preparations. Targeting recombinant vaccines to antigen presenting cells (APCs) such as dendritic cells however can improve immunogenicity by ensuring that antigen processing is as efficient as possible. Immune complexes, one of a number of routes of APC targeting, are mimicked by a recombinant approach, crystallizable fragment (Fc) fusion proteins, in which the target immunogen is linked directly to an antibody effector domain capable of interaction with receptors, FcR, on the APC cell surface. A number of virus Fc fusion proteins have been expressed in insect cells using the baculovirus expression system and shown to be efficiently produced and purified. Their use for immunization next to non-Fc tagged equivalents shows that they are powerfully immunogenic in the absence of added adjuvant and that immune stimulation is the result of the Fc-FcR interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P-glycoproteins (p-gps) are ubiquitous membrane proteins from the ABC (ATP-binding cassette) family. They have been found in many animals, bacteria, plants and fungi and are extremely important in regulating a wide range of xenobiotics including pesticides. P-gps have been linked to xenobiotic resistance, most famously in resistance to cancer drug treatments. Their wide substrate range has led to what is known as "multidrug resistance", where resistance developed to one type of xenobiotic gives resistance to a different classes of xenobiotic. P-gps are a major contributor to drug resistance in mammalian tumours and infections of protozoan parasites such as Plasmodium and Leishmania. There is a growing body of literature suggesting that p-gps, and other ABC proteins, are important in regulating pesticide toxicity and represent potential control failure through the development of pesticide resistance, in both agricultural and medical pests. At the same time, aspects of their biochemistry offer new hope in pest control, in particular in furthering our understanding of toxicity and offering insights into how we can improve control without recourse to new chemical discovery. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides. Chemical reduction of up to half of these disulfides was compatible with anti-E2 monoclonal antibody reaction, CD81 receptor binding, and viral entry, whereas complete reduction abrogated these properties. The addition of 5,5'-dithiobis-2-nitrobenzoic acid had no effect on viral entry. Thus, E2 function is only weakly dependent on its redox status, and cell entry does not require redox catalysts, in contrast to a number of enveloped viruses. Because E2 is a major neutralizing antibody target, we examined the effect of disulfide bonding on E2 antigenicity. We show that reduction of three disulfides, as well as deletion of HVR1, improved antibody binding for half of the patient sera tested, whereas it had no effect on the remainder. Small scale immunization of mice with reduced E2 antigens greatly improved serum reactivity with reduced forms of E2 when compared with immunization using native E2, whereas deletion of HVR1 only marginally affected the ability of the serum to bind the redox intermediates. Immunization with reduced E2 also showed an improved neutralizing antibody response, suggesting that potential epitopes are masked on the disulfide-bonded antigen and that mild reduction may increase the breadth of the antibody response. Although E2 function is surprisingly independent of its redox status, its disulfide bonds mask antigenic domains. E2 redox manipulation may contribute to improved vaccine design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influenza viruses attach to host cells by binding to terminal sialic acid (Neu5Ac) on glycoproteins or glycolipids. Both the linkage of Neu5Ac and the identity of other carbohydrates within the oligosaccharide are thought to play roles in restricting the host range of the virus. In this study, the receptor specificity of an H5 avian influenza virus haemagglutinin protein that has recently infected man (influenza strain A/Vietnam/1194/04) has been probed using carbohydrate functionalised poly(acrylic acid) polymers. A baculovirus expression system that allows facile and safe analysis of the Neu5Ac binding specificity of mutants of H5 HA engineered at sites that are predicted to effect a switch in host range has also been developed. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Placental neurokinin B appears to be post-translationally modified by phosphocholine (PC) attached to the aspartyl side chain at residue 4 of the mature peptide. Corticotrophin releasing factor (CRF) was found to be expressed by the rat placenta with the main secreted forms being phosphocholinated proCRF+/- one or two polysaccharide moieties. A combination of high-pressure liquid chromatography (HPLC) and two-site immunometric analysis suggested that PC was also attached to the placental precursors of adrenocorticotrophin, hemokinin, activin and follistatin. However, the fully processed forms of rat placental activin and CRF were free of PC. Formerly, the parasitic filarial nematodes have used PC as a post-translational modification, attached via the polysaccharicle moiety of certain secretory glycoproteins to attenuate the host immune system allowing parasite survival, but it is the PC group itself which endows the carrier with the biological activity. The fact that treatment of proCRF peptides with phospholipase C but not endoglycosidase destroyed PC immunoreactivity suggested a simpler mode of attachment of PC to placental peptides than that used by nematodes. Thus, it is possible that by analogy the placenta uses its secreted phosphocholinated hormones to modulate the mother's immune system and help protect the placenta from rejection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity of the surface glycoproteins of enveloped viruses to mediate virus/cell binding and membrane fusion requires a proper thiol/disulfide balance. Chemical manipulation of their redox state using reducing agents or free sulfhydryl reagents affects virus/cell interaction. Conversely, natural thiol/disulfide rearrangements often occur during the cell interaction to trigger fusogenicity, hence the virus entry. We examined the relationship between the redox state of the 20 cysteine residues of the SARS-CoV (severe acute respiratory syndrome coronavirus) Spike glycoprotein S1 subdomain and its functional properties. Mature S1 exhibited similar to 4 unpaired cysteines, and chemically reduced S1 displaying up to similar to 6 additional unpaired cysteines still bound ACE2 and enabled fusion. In addition, virus/cell membrane fusion occurred in the presence of sulfhydryl-blocking reagents and oxidoreductase inhibitors. Thus, in contrast to various viruses including HIV (human immunodeficiency virus) examined in parallel, the functions of the SARS-CoV Spike glycoprotein exhibit a significant and surprising independence of redox state, which may contribute to the wide host range of the virus. These data suggest clues for molecularly engineering vaccine immunogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of highly active antiretroviral therapy (HAART) on HCV replication is controversial, with some studies reporting no effect and others increases, reductions and even clearances of HCV RNA after treatment. In this study, the effect of HAART was investigated on the titre of anti-HCV specific antibodies and on the relationship between these antibodies and HCV RNA level in a cohort of 24 patients with inherited bleeding disorders. A significant inverse correlation between antibodies to both total HCV proteins and HCV RNA (R = -0.42, P = 0.05) and between antibodies to HCV envelope glycoproteins and HCV RNA (R = -0.54, P = 0.01) was observed pre-HAART. The relationship disappeared or was obscured after therapy (R = 0.24, P = 0.30 and R = 0.16, P = 0.50, respectively). Thus, we show that HAART affects the HCV specific humoral immune responses without affecting the HCV RNA level. (C) 2004 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influenza viruses attach to host cells by binding to terminal sialic acid (Neu5Ac) on glycoproteins or glycolipids. Both the linkage of Neu5Ac and the identity of other carbohydrates within the oligosaccharide are thought to play roles in restricting the host range of the virus. In this study, the receptor specificity of an H5 avian influenza virus haemagglutinin protein that has recently infected man (influenza strain A/Vietnam/1194/04) has been probed using carbohydrate functionalised poly(acrylic acid) polymers. A baculovirus expression system that allows facile and safe analysis of the Neu5Ac binding specificity of mutants of H5 HA engineered at sites that are predicted to effect a switch in host range has also been developed. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite cells represent the stem cell population of adult skeletal muscle. The molecular mechanisms that control the proliferation of satellite cells are not well understood. In this study, we show that in response to injury, myofibres activate Wnt ligand transcription and activate a reporter cell line that is sensitive to the canonical Wnt-signalling pathway. Activated satellite cells on isolated cultured myofibres show robust expression of activated-β-catenin (Act-β-Cat), a key downstream transcriptional coactivator of canonical Wnt signalling. We provide evidence that the Wnt family of secreted glycoproteins act on satellite cells in a ligand-specific manner. Overexpression of Wnt1, Wnt3a or Wnt5a protein causes a dramatic increase in satellite-cell proliferation. By contrast, exposure of satellite cells to Wnt4 or Wnt6 diminishes this process. Moreover, we show that the prolonged satellite-cell quiescence induced by inhibitory Wnt is reversible and exposing inhibited satellite cells to stimulatory Wnt signalling restores their proliferation rate. Stimulatory Wnt proteins induce premature satellite cell BrdU incorporation as well as nuclear translocation of Act-β-Cat. Finally, we provide evidence that the Act-β-Cat translocation observed in single fibres during in vitro culture also occurs in cases of acute and chronic skeletal muscle regeneration in rodents and humans. We propose that Wnt proteins may be key factors that regulate the rate of satellite-cell proliferation on adult muscle fibres during the wound-healing response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mannose-binding C-type lectin receptors, expressed on Langerhans cells and subepithelial dendritic cells (DCs) of cervico-vaginal tissues, play an important role in HIV-1 capture and subsequent dissemination to lymph nodes. DC-SIGN has been implicated in both productive infection of DCs and the DC-mediated trans infection of CD4(+) T cells that occurs in the absence of replication. However, the molecular events that underlie this efficient transmission have not been fully defined. In this study, we have examined the effect of the extracellular domains of DC-SIGN and Langerin on the stability of the interaction of the HIV-1 envelope glycoprotein with CD4 and also on replication in permissive cells. Surface plasmon resonance analysis showed that DC-SIGN increases the binding affinity of trimeric gp140 envelope glycoproteins to CD4. In contrast, Langerin had no effect on the stability of the gp140:CD4 complex. In vitro infection experiments to compare DC-SIGN enhancement of CD4-dependent and CD4-independent strains demonstrated significantly lower enhancement of the CD4-independent strain. In addition DC-SIGN increased the relative rate of infection of the CD4-dependent strain but had no effect on the CD4-independent strain. DC-SIGN binding to the HIV envelope protein effectively increases exposure of the CD4 binding site, which in turn contributes to enhancement of infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study tested the hypothesis that a set of predominantly myeloid restricted receptors (F4/80, CD36, Dectin-1, CD200 receptor and mannan binding lectins) and the broadly expressed CD200 played a role in a key function of plasmacytoid DC (pDC), virally induced type I interferon (IFN) production. The Dectin-1 ligands zymosan, glucan phosphate and the anti-Dectin-1 monoclonal antibody (mAb) 2A11 had no effect on influenza virus induced IFNα/β production by murine splenic pDC. However, mannan, a broad blocking reagent against mannose specific receptors, inhibited IFNα/β production by pDC in response to inactivated influenza virus. Moreover, viral glycoproteins (influenza virus haemagglutinin and HIV-1 gp120) stimulated IFNα/β production by splenocytes in a mannan-inhibitable manner, implicating the function of a lectin in glycoprotein induced IFN production. Lastly, the effect of CD200 on IFN induction was investigated. CD200 knock-out macrophages produced more IFNα than wild-type macrophages in response to polyI:C, a MyD88-independent stimulus, consistent with CD200's known inhibitory effect on myeloid cells. In contrast, blocking CD200 with an anti-CD200 mAb resulted in reduced IFNα production by pDC-containing splenocytes in response to CpG and influenza virus (MyD88-dependent stimuli). This suggests there could be a differential effect of CD200 on MyD88 dependent and independent IFN induction pathways in pDC and macrophages. This study supports the hypothesis that a mannan-inhibitable lectin and CD200 are involved in virally induced type I IFN induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. Results BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. Conclusions The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.